A remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane

author

  • M. A. Ardalani Department of Mathematics, Faculty of Science, University of Kurdistan, Pasdaran Ave., Postal Code: 66177-175 Sanandaj, Iran.
Abstract:

In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A special subspace of weighted spaces of holomorphic functions on the upper half plane

In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...

full text

Two Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane

Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...

full text

Weighted Composition Operators from Weighted Bergman Spaces to Weighted-Type Spaces on the Upper Half-Plane

and Applied Analysis 3 Let β > 0. The weighted-type space or growth space on the upper half-planeA∞ β Π consists of all f ∈ H Π such that ∥ ∥f ∥ ∥ A∞ β Π sup z∈Π Iz β ∣ ∣f z ∣ ∣ < ∞. 1.7 It is easy to check thatA∞ β Π is a Banach space with the norm defined above. For weightedtype spaces on the unit disk, polydisk, or the unit ball see, for example, papers 10, 32, 33 and the references therein....

full text

Composition Operators on Weighted Bergman Spaces of a Half Plane

We use induction and interpolation techniques to prove that a composition operator induced by a map φ is bounded on the weighted Bergman space Aα(H) of the right half-plane if and only if φ fixes ∞ non-tangentially, and has a finite angular derivative λ there. We further prove that in this case the norm, essential norm, and spectral radius of the operator are all equal, and given by λ.

full text

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

full text

Weighted Composition Operators and Dynamical Systems on Weighted Spaces of Holomorphic Functions on Banach Spaces

Let BX and BY be the open unit balls of the Banach SpacesX and Y , respectively. Let V and W be two countable families of weights on BX and BY , respectively. Let HV (BX) (or HV0 (BX)) and HW (BY ) (or HW0 (BY )) be the weighted Fréchet spaces of holomorphic functions. In this paper, we investigate the holomorphic mappings φ : BX → BY and ψ : BX → C which characterize continuous weighted compos...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 2

pages  11- 14

publication date 2013-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023